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Quantum Bouncer With Dissipation

G. López1,2 and G. González1

Effects on the spectra of the quantum bouncer due to dissipation are given when a lin-
ear of quadratic dissipation is taken into account. Classical constants of motions and
Hamiltonians are deduced for these systems and their quantized eigenvalues are esti-
mated through perturbation theory. Differences were found comparing the eigenvalues
of these two quantities.
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1. INTRODUCTION

Dissipative systems has been one of the must subtle and difficult topics to
deal with in classical (Dodonov, 1981; Glauber and Man’ko, 1984; López et al.,
1997) and quantum physics (López et al., 2001; Okubo, 1981; Razavy, 1972). In
general, to construct a consistent Lagrangian and Hamiltonian formulation for a
given dissipative system can be a big challenge (López, 1996; López and González,
2003; Mijatovic et al., 1984). There are basically two approaches to study dissi-
pative systems. The first one tries to bring about the dissipation as a results of
averaging over all the coordinates of the bath system, where one considers the
whole system as composed of two parts, our original conservative system and the
bath system which interacts with the conservative system and causes the dissi-
pation (of energy) on it (Berman et al., 2003; Caldeira and Leggett, 1983; Hu
et al., 1992; Unruh and Zurek, 1989). This approach has its own value and will
not be followed or discussed here. The second approach considers that the bath
system produces to our initially conservative system an average effect which is
expressed as an additional external velocity depending force acting on the con-
servative system and transforming it into a dissipative system with this velocity
depending force, the resulting classical dissipative system contains then this phe-
nomenological (or theoretical) velocity depending force. Then, the question arises
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over its consistent Lagrangian and Hamiltonian formalism and the consequences
of its quantization. This approach, in addition, allows us to study and test the
Hamiltonian approach for quantum mechanics and its consistence (López, 2002)
and this is the approach we will follow in this paper. A system that has attracted
our attention is the quantum bouncer. The quantum bouncer (Gean-Banacloche,
1999; Goodmanson, 2000) is the quantization of the motion of a particle which
is attracted by the constant gravity force, that is, close to surface of the earth.
This particle hits a perfectly reflexing surface, producing the bouncing effect. This
system with an additional dissipation force has particular importance because of
its potential experimental realization. This dissipative system has been studied
very little so far, by using the first approach mentioned above (Onofrio and Viola,
1996).

We will assume that the external velocity depending force has linear and
quadratic dependence with respect to the velocity. This approach gives us the
opportunity to check the nature of quantization, using the Hamiltonian or con-
stant of motion associated to the system, that is, by using the usual quantization
of the linear-generalized momentum or using the quantization of the velocity.
This consideration is particularly interesting in dissipative systems since one can-
not always find a Hamiltonian as a function of the variables position and linear
momentum (López, 1999a,b), that is, the velocity “v” cannot always be known
explicitly in terms of the linear momentum “p” and position “x” of the particle
through the relation p = ∂L/∂v , where L is the Lagrangian of the system. This
paper is organized as follows: we present the classical study for the dissipative sys-
tem considering the linear and quadratic velocity depending force. The constant
of motion, the Lagrangian, and the Hamiltonian of the system are derived, and we
give their expressions up to second order in the dissipation parameter. We present
the modification for the eigenvalues of the quantum bouncer, when this dissipation
is taken into account, for the above-approximated (weak dissipation) constant of
motion and Hamiltonian, using quantum perturbation theory. Finally, we present
the conclusions and discussions of our results.

2. CLASSICAL LINEAR DISSIPATION

The motion of a particle of mass m under a constant gravitational force and
a linear dissipative force is described by the equation

m
d2x

dt2
= −mg − αv , (1)

where x is the position of the particle, g is the constant acceleration due to earth
gravity, α is the parameter which characterizes the dissipation, and v = dx/dt is
the velocity of the particle. A constant of motion of the autonomous system (1) is
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a function Kα = Kα(x , v) satisfying the equation (López, 1999a,b)

v
∂Kα

∂x
−

(
g + α

m
v

)
∂Kα

v
= 0. (2)

The solution of this equation such that limα→0 Kα = mv2/2 + mgx (the usual total
energy for the nondissipative system) is given by

Kα = m2gv

α
− m

(
mg

α

)2

ln

(
1 + αv

mg

)
+ mgx . (3)

The Lagrangian associated to (1) can be obtained using the known expression
(López, 2002)

Lα = v
∫

Kα(x , v)

v2
dv , (4)

bringing about the following Lagrangian

Lα = m2gv

α
ln

(
1 + αv

mg

)
+ m

(
mg

α

)2

ln

(
1 + αv

mg

)
− mgx − m2gv

α
. (5)

Therefore, the generalized linear momentum and Hamiltonian are given by

pα = m2g

α
ln

(
1 + αv

mg

)
(6)

and

Hα = m
(mg

α

)2
(

exp

(
αpα

m2g

)
− 1

)
− mg

α
pα + mgx . (7)

At two orders in the dissipation parameter α, one has the constant of motion, the
Lagrangian, the generalized linear momentum, and Hamiltonian given as

K = 1

2
mv2 + mgx − α

3g
v3 + α2

4mg2
v4, (8)

L = 1

2
mv2 − mgx − α

6g
v3 + α2

12mg2
v4, (9)

p = mv − α

2g
v2 + α2

3mg
v3, (10)
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and

H = p2

2m
+ mgx + α

6mg
p3 + α2

24m5g2
p4. (11)

The constant of motion (3) or (8a) and the Hamiltonian (7) or (8d) bring
about the damping bouncing effect on the spaces (x , v) and (x , p). The dissipative
parameter α can be determined by measuring the velocity vo at the reflexing surface
(x = 0) and then measuring its maximum displacement xmax (v = 0). Equaling the
value of the constant of motion on both situations, one gets the expression

m2gvo

α
− m

(mg

α

)2
ln

(
1 + αvo

mg

)
= mgxmax, (12)

where the parameter α can be obtain.

3. CLASSICAL QUADRATIC DISSIPATION

In this case, the motion of the particle is described by the equation

m
d2x

dt2
= −mg − γ v|v|, (13)

where γ represents a dissipation constant which, of course, is different from the
previous case. Proceeding in the same way as we did for the linear case, the con-
stant of motion, Lagrangian, generalized linear momentum, and Hamiltonian are
given by

K± = 1

2
mv2 exp

(
±2γ x

m

)
± m2g

2γ

(
exp

(
±2γ x

m

)
− 1

)
, (14)

L± = 1

2
mv2 exp

(
±2γ x

m

)
± m2g

2γ

(
exp

(
±2γ x

m

)
− 1

)
, (15)

p± = mv exp

(
±2γ x

m

)
, (16)

and

H± = p2
±

2m
exp

(
∓2γ x

m

)
± m2g

2γ

(
exp

(
±2γ x

m

)
− 1

)
, (17)

where the upper sign corresponds to the case v ≥ 0, and the lower sign cor-
responds to the case v < 0. These equation where already given in reference
(Negro and Tartaglia, 1980a,b). The damping effect of the bouncing particle in
the space (x , v) can be traced in the following way: starting with the initial con-
dition xo = 0 and vo > 0, for example, the constant of motion K+ is determined,
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K+ = mv2
o/2. Then, the maximum distance xmax(v = 0) is calculated from the ex-

pression K+ = (m2g/2γ )(exp(2γ xmax/m) − 1) which helps to calculate the con-
stant K−, K− = −(m2g/2γ )(exp(−2γ xmax/m) − 1). This K− is used now to cal-
culated the velocity at the turning point (x = 0), v∗

1 = −√
2K−/m. Considering a

perfectly reflexing surface, the velocity of the bouncing particle for the next cycle
is v1 = −v∗

1 (v1 < vo), and the above cycle is reproduced again, and so on. Starting
with the same initial conditions, the trajectories in this space are one below the
other at any time, as the damping factor is grater. The damping effect in the space
(x , p) through the Hamiltonian approach can be analyzed similarly. However, the
trajectories starting with the same initial conditions on this space are not below
the other all the time, as the damping factor is greater. This strange effect is due
to the change in sign in (11d) with respect to (11a), produced by the position and
velocity dependence of the expression (11c).

To determine the constant γ through the constant of motion, one can start with
the initial conditions (xo = 0, vo > 0) and can determined the constant of motion
K+ = mv2

o/2. Then, one can measure the maximum displacement xmax(v = 0)
and to solve γ from the equation

1

2
mv2

o = m2g

2γ

(
exp

(
2γ xmax

m

)
− 1

)
(18)

Up to second order in the dissipation parameter, one has from (11a) to (11d) the
constant of motion, the Lagrangian, the generalized linear momentum, and the
Hamiltonian given by

K± = 1

2
mv2 + mgx ± γ [v2x + gx2] + γ 2[v2x2/m + 2gx3/3m], (19)

L± = 1

2
mv2 − mgx ± γ [v2x + gx2] + γ 2[v2x2/m − 2gx3/3m], (20)

p± = mv ± γ [2vx] + γ 2[2vx2/m], (21)

H± = p2

2m
+ mgx ∓ γ [p2x/m2 − gx2] + γ 2[p2x2/m3 + 2gx3/3m]. (22)

4. QUANTIZATION OF THE CONSTANT OF MOTION

Equations (8a) and (13a) can be written as

K (x , v) = Ko(x , v) + V (x , v), (23)

where Ko is the constant of motion without dissipation

Ko(x , v) = 1

2
mv2 + mgx , (24)
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and V takes into account the dissipation factors

V (x , v) =




−α
(

v3

3g

)
+ α2

(
v4

4mg2

)
(linear case)

∓γ [v2x + gx2] + γ 2
[

v2x2

m + 2gm3

3m

]
(quadratic case)

(25)

The quantization of (14) can be carried out through the associated
SchröUdinger’s equation of this constant of motion

i h
∂�

∂t
= K̂ (̂x , v̂ )�, (26)

where � = �(x , t) is the wave function, h is the Plank constant divided by
2π, K̂ = K̂ o + V̂ is a Hermitian operator associated to (17), and v̂ is the velocity
operator defined as

v̂ = − i h

m

∂

∂x
. (27)

Since Eq. (16) represents an stationary problem, the usual proposition �(x , t) =
exp(−iEK t/h)ψ(x) transforms (16) to an eigenvalue problem

(K̂ 0 + V̂ )ψ = E K ψ. (28)

Taking the operator V̂ as a perturbation of the constant of motion Ko, one
can calculate an approximated solution to the problem (18) through perturbation
theory. The solution of the eigenvalue problem

K̂ oψ
(0)
n = E (0)

n ψ (0)
n (29)

is well known (Gean-Banacloche, 1999; Goodmanson, 2000), with ψ
(0)
0 being the

eigenfunction given by

ψ (0)
n = Ai(z − zn)

|Ai ′(−zn)| , (30)

where Ai and Ai ′ are the Airy function and its first differentiation, and zn is its nth-
zero (Ai(−Zn) = 0) which ocurres for negative argument only. z is the normalized
variable z = x/ lg with lg = (h2/2m2g)1/3, and zn is related to the eigenvalue E (0)

n
through the expression

zn = E (0)
n

mglg
. (31)

Up to second order in perturbation theory, the eigenvalues of (18) are given (in
Dirac notation; Dirac, 1992) as

E K
n = E (0)

n + 〈n|V̂ |n〉 +
∑
k �=n

|〈n|V̂ |k〉|2
E (0)

k − E (0)
n

, (32)
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where 〈z|n〉 = ψ (0)
n . Using the Hermitian operators v̂2x = (̂v2x + v̂ x v̂ + xv̂2)/3

and v̂2x2 = (̂v2x2 + v̂ x2v̂ + x2v̂2 + xv̂2x + xv̂xv̂ + v̂ x v̂ x)/6 for the associated
expressions on (25b), and using the relations 〈n|xs |k〉 = ls

g〈n|zs |k〉 and 〈n|ds/

dxs |k〉 = l−s
g 〈n|ds/dzs |k〉 for any integer s, one has (see Appendix for a list of

matrix elements)

E K
n = E (0)

n

+




α2

[
l2
g z2

n

5m + 8
9 gl3

g

∑
k �=n

|1/2+mglg/(E (0)
k −E (0)

n )|2
E (0)

k −E (0)
n

]
(linear)

∓γ
12gl2

g z2
n

15 + γ 2

[ (
− 1

2 + 56z3
n

105

)
2gl3

g

m + 4g2l4
g

∑
k �=n

ank

]
, (quadratic)

(33)

where ank is a real number given by

ank = |12 − 2zk(zn − zk)2 + (zn − zk)3|2
(zk − zn)9

. (34)

Note that for the linear dissipative case, there is no real contribution at first approx-
imation, and for the quadratic dissipative case, the first-order contribution depends
on whether the particle is moving up (-) or down (-). Within a full cycle, this first
order correction is canceled out and the second-order contribution remains. Of
course, for the approximation (23a) to be valid, one must have that the second
term of this expression must be much lesser than E (0)

n which makes a restriction
on the possible value of the dissipative parameter.

5. QUANTIZATION OF THE HAMILTONIAN

Equations (8d) and (13d) can be written as

H (x , p) = Ho(x , p) + W (x , p), (35)

where Ho is the Haniltonian without dissipation,

Ho(x , p) = p2

2m
+ mgx , (36)

and W has the dissipation terms,

W (x , p) =




α
(

p3

6mg

)
+ α2

(
p4

24m5g2

)
(linear)

∓γ
[

p2x
m2 − gx2

]
+ γ 2

[
p2x2

m3 + 2gx3

3m

]
(quadratic)

(37)
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It is necessary to mention that the quantization of some systems for quadratic
dissipation has been solved by different authors (Borges et al., 1988; Huang et al.,
1989; Mijatovic et al., 1984; Negro and Tartaglia, 1980a,b; Razavy, 1983; Stuckeno
and Kobe, 1986) but perfectly reflexing wall potential,

Ṽ (x) =
{∞ for x < 0

mgx for x ≤ 0
(38)

Moreover, the solution given in reference (Negro and Tartaglia, 1980a,b) is
singular when the dissipation parameter goes to zero. Therefore, we think it worths
to make the analysis of the quantization for small orders in the parameter γ . For
the usual Shrödinger quantization approach, one has the stationary equation

i h
∂�

∂t
= Ĥ (x , p̂)�, (39)

where Ĥ is the Hamiltonian operator associated to (24), and p̂ is the usual linear
momentum operator p̂ = −i h∂/∂x . Equation (27) is transformed to an eigenvalue
problem, Ĥψ(x) = E Hψ(x), through the proposition �(x , t) = exp(−i E H t/h)ψ
(x). Since the Hamiltonian Ĥ is given by Ĥ = Ĥ o + Ŵ , where the solution of the
equation

Ĥ oψ
(0)
n = E (0)

n ψ (0)
n (40)

is given by (20) and (21). Perturbation theory can be used to determine the approx-
imated values of the eigenvalues E H

n (similarly as done with expression (22)). Us-
ing the Hermitian operators p̂2x = ( p̂2x + p̂x p̂ + x p̂2)/3 and p̂2x2 = ( p̂2x2 +
p̂x2V̂ + x2 p̂2 + x p̂2x + x p̂x p̂ + p̂x p̂x)/6 for the associated expressions on
(25b), one gets

E H
n = E (0)

n

+




α2

[
l2
g z2

n

30m + 4
9 gl3

g

∑
k �=n

|1/2+mglg/(E (0)
k −E (0)

n )|2
E (0)

k −E (0)
n

]
(linear)

±γ
4gl2

g z2
n

15 +γ 2

[ (
− 1

2 + 56z3
n

105

)
2gl3

g

m + 4g2l4
g

∑
k �=n

ank

]
, (quadratic)

(41)

where αnk is given by (23b). As one can see from (23) and (29), there is a difference
between the eigenvalues associated to the constant of motion and those associated
to the Hamiltonian. Their relative differences, δEn = (E H

n − E K
n )/E (0)

n , is given
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by

δEn

E (0)
n

=




α2

[
− 1

6
lg zn

6m2g − 4

9

l2
g

mzn

∑
k �=n

|1/2 + mglg/(E (0)
k − E (0)

n )|2
E (0)

k − E (0)
n

]
(linear)

±γ
16gl2

g z2
n

15 , (quadratic)

(42)

6. CONCLUSION

The classical and quantum problem of a particle bouncing on a hard sur-
face under the influence of gravity and subject to a linear and quadratic velocity
dissipative force were treated by using the constant of motion and Hamiltonian.
Expression (3) and (11a) gives us the expected damping behavior of the particle
on the (x , v) space, but the expression (7) and (11d) shows an unexpected behav-
ior in the (x , p) space (two trajectories on this space, for dissipative parameter
one bigger than other, do not follow one under the other all the time). For the
quantum case, we have analyzed the eigenvalues for the constant of motion and
Hamiltonian up to second order in the dissipation parameter, using perturbation
theory. Relation (30) tells us that that there is a difference whether the constant
of motion or the Hamiltonian is quantized, and it suggests that one could see this
difference experimentally. In this way, one could see whether nature prefers to fol-
low constant of motions rather than Hamiltonians for dissipative systems. Finally,
one must observe that for the full linear case (7), it is possible to solve exactly the
Shrödinger equation in the momentum representation, and this will be analyzed
on a future paper.

APPENDIX

We show here a list of some matrix elements from reference (Gean-
Banacloche, 1999; Goodmanson, 2000) and some other calculated from the same
reference (an correction of a sign has been made to some matrix elements). Given
the functions (20) and n �= k, one has

〈n|k〉 = δnk (43)

〈n|z|n〉 = 2

3
zn 〈n|z|k〉 = 2(−1)n+k+1

(zn − zk)2
(44)

〈n|z2|n〉 = 8

15
z2

n 〈n|z2|k〉 = 24(−1)n+k+1

(zn − zk)4
(45)

〈n|z3|n〉 = 3

7
+ 48

105
z3

n 〈n|z3|k〉 = 24(zn + zk)(−1)n+k+1

(zn − zk)4
(46)
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〈
n| d

dz
|n

〉
= 0

〈
n| d

dz
|k

〉
= (−1)n+k

zn − zk
(47)

〈
n| d2

dz2
|n

〉
= −1

3
zn

〈
n| d2

dz2
|k

〉
= 2(−1)n+k

(zn − zk)2
(48)

〈
n| d3

dz3
|n

〉
= 1

2

〈
n| d3

dz3
|k

〉
=

(
1

2
+ 1

zk − zn

)
(−1)n+k (49)

〈
n| d4

dz4
|n

〉
= 1

5
z2

n

〈
n| d4

dz4
|k

〉
= −2(zk − zn) + 24 − 2zk(zk − zn)2

(zk − zn)4
(−1)n+k

(50)
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López, G. (2002). Revista Mexicana de Fisica 48(1), 10.
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